
1. Plume (Plugin Mechanism)
Plume is a plugin mechanism that brings the flexibility of plugins to Earth System models. 
Developed at ECMWF for the Destination Earth initiative, plume allows the development 
of additional model functionalities as plugins.

Plugins are loaded at runtime and are granted (read)-access to model fields in memory to 
perform specific data processing tasks. Model fields are accessed through a well-defined 
interface provided by the Atlas library (github.com/ecmwf/atlas).

The biggest benefit of such mechanism is that plugins can perform processing tasks while 
data is still distributed in the computing nodes, avoiding to write model data to disk first. 
Saving I/O is particularly relevant for the very high-resolution Destination Earth 
simulations and for high time-frequency post-processing. Plume API is currently available 
for both C++ and Fortran programming languages.

Plume: A Plugin Mechanism for Earth System Models
Antonino Bonanni1*, James Hawkes1, Tiago Quintino1

(1) ECMWF; (*) antonino.bonanni@ecmwf.int

Diagram of plume library interfaced with ECMWF Integrated Forecasting System (IFS). Numerical fields are passed on 
to plugins through Atlas library.

3. Loading Plugins Through Negotiation
Plume plugins are loaded at runtime upon successful negotiation with the plume 
“manager”. During negotiation, each candidate plugin declares which parameters it 
requires to run and the manager cross checks them against the parameters available for 
the simulation. Only plugins whose requirements can be met are set “active” and run. A 
diagram of the negotiation phase is depicted here below.

4. Plugin Structure
A plume plugin is a dynamically loaded library that implements a specific data-processing 
functionality. Plume interacts with the plugin at the beginning of the simulation to decide 
whether the plugin is eligible to run (see Negotiation section). Upon successful 
negotiation, the plugin runs along with the model and perform its core functionality 
(diagram below).

5. Initial Testing
Plume has been tested on several HPC systems and various potentially useful plugin 
examples have been explored and open sourced (github.com/ecmwf/plume-examples).
This section presents some of the initial results obtained by running plume interfaced with 
IFS on the LUMI system for the first Destination Earth Minimum Viable Product (MVP) 
run, successfully completed in June 2023.

Schematic structure of a plume plugin. The plugin declares which parameters are needed to perform its task and 
implements a specific functionality to be run along with the Earth System model. 

• What is plume?

• An open-source plugin system github.com/ecmwf/plume

• Designed for Earth System Models

• What can a plume plugin do?

• Read and process model data in memory

• Implement a specific model functionality

• Why plume?

• Modular, exchangeable and re-usable plugins

• Interfaces available for C++ and Fortran

• Well-defined interface to model data through Atlas github.com/ecmwf/atlas

• Access data directly from model memory => no unnecessary I/O!

Example of 3D area cropping plume plugin: it uses Atlas API to perform a 3D cropping of the wind field (at all vertical 
level) in a user-defined area of the global field.

Example of plugin that implements a simplified wind farm model. It extracts the wind components at 100m height on 
user-defined locations and runs a model that predicts the generated power according to the wind turbine specifications.

Wind Turbine

Example of plume negotiation mechanism. Before the simulation begins, the plume manager checks the requirements of 
each plugin and decides which plugin is eligible to run according to the available parameters.

https://www.github.com/ecmwf/atlas
https://www.github.com/ecmwf/plume-examples
https://github.com/ecmwf/plume
https://github.com/ecmwf/atlas

	Slide Number 1

