Solar power nowcasting to days-ahead post-processing for extreme events:
a modular approach including synthetic data
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Introduction and data

Workflow

PV site metadata:

Forecasting solar irradiance, nowcasting to short-range, is crucial in managing solar power. With fast GPUs, Known sites + data ocati 't ontati

deep learning techniques may learn complex structures across time-series in heterogenous datasets. We study ocation, panel type, orientation

deep learning for irradiance/ghi using, here as an example, the BSRN network as well as MSG LSA SAF data. Data deally: PV production data real-
Collection of forecast, time available

The focus of our current method is to provide location optimized PV forcasts providing daily hourly from 6:00- observations, etc.

16:00 with a 15 minute update frequency in the nowcasting to short-range. Also we aim for spatial irradiance

nowcasts.

Data sources are:
« BSRN: Baseline Surface Radiation Network

« ERAS5-land: hourly reanalysis in high resolution of surface variables

e CAMS: radiation time series of the ADS data store

« AROME Austria: high resolution NWP for the alpine region, hourly forecasts

Sonnblick Observatory

« Observations: observations obtained at a nearby weather observation/synoptic site (quality controlled), e.g.: Wi e % @
: : Train the ML model > <

« MSG: for spatial GHI nowcasting, the LSA SAF DSSF TOT product

« PV production: of selected Austrian and German sites

Deep learning methods

(1) Semi-synthetic Data Generator

As often observation time series are short/incomplete, and deep learning methods or any other statistical
method need training data to fit a model for a specific task, semi-synthetic data are generated.
A random forest model using observation time-series of similar data sources is used to predict data of a limited

data source. Needs some information of the PV farm/panel types.

Predicted parameters are: PV production and/or GHI (depending on site data). Used input data are: GHI, DNI,
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Model training

Case studies

L ocation-based cases

DHI, LWD, T2M, RelHum, pressure as well as model (AROME here) parameters. CASE STUDIES 2021/22

close obser\{ations, such as RANDOM EOREST:
global rad., wind, temperature

>> learns from long-time series
>> prolongs a too limited data source
>> fast + robust data production
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(il1) Spatial nowcasting with satellite data (SatNow)

Spatial, data-driven nowcasts using the LSA SAF DSSF_TOT parameter. A combination of two deep learning

6:00-16:00 UTC in 2021/22

\ offering ghi, dni,...

(1) Semi-synthetic data results

models (IrradianceNet, PhyDNet) including adaptations and robustness for missing time steps in both training Measured

and prediction (i.e. missing satellite data for an observation time step). Includes a ConvLSTM-autoencoder and

physical disentangling concept by PhyCell design.

Currently implemented operational for Austria, adaptations to other DE_330 regions are ongoing.

IrradianceNet PhyCell layout
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IrradPhyDNet

Case studies presented here include hourly issued nowcasts (2021/2022) for up to +6 hours ahead
for location based nowcasts and up to +3 hours ahead for spatial nowcasts.

+0:15 to +6:00 ahead (i.e., 15 min. Updates) frequency).
radiation network Austrian + German PV sites, european BSRN, spatial forecasts

Training: combination of 10 years real and synthetic data

(111) Spatial nowcasts 3-hours ahead, issued every 15 minutes (SatNow)

Train the ML model
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Summarizing Next steps
« Semi-synthetic data generator beneficial for deep learning * Implementation of IrradPhyDNet for Denmark/Netherlands domain
* Synthetic data necessary for no-data sites but might lack accuracy « Transfer learning approach with IrradPhyDNet using several different domains in training
« Semi-synthetic + location based predictions deliver good results « Combine location-based and IrradPhyDNet in prediction
* In complex terrain semi-synthetic data generator very benecial for deep learning « Implementation of transformer ensemble models for location based prediction
« Random forest as a synthetic data generator best choice as fast, able to robustly process « User integration

many parameters with short training horizons
« IrradPhyDNet very promising and very good results

« Under-representation of extremes/outliers needs more investigation
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