

Triggering module for the Extremes DT

DESTINATION EARTH

Petter Lind¹, Lenka Hájková², Toni Jurlina³, Ilja Maljutenko⁴, Marko Rus⁵, Boryana Tsenova⁶

1 SMHI (Sweden), 2 CHMI (Czech Republic), 3 GeoSphere (Austria), 4 TalTech (Estonia), 5 ARSO (Slovenia), 6 NIMH (Bulgaria)

correspondence: petter.lind@smhi.se

Purpose & Goals

- Development of a set of methods designed for detection of potentially extreme and high-impact weather events, optimally within a few days lead time.
- The outcome from detection methods will act to trigger hyper-resolution Numerical Weather Prediction (NWP) and impact sector model simulations as well as other post-processing procedures.
- This will be part of the DestinE on-demand extreme Digital Twin Engine (DTE) integrated workflow.

Outlook

- Continual development and **refinement** of detection methods.
- Development of more advanced methods built on statistical or machine learning methods, storm tracking methodologies and large-scale circulation clustering techniques.
- Increase the **robustness** of detection and triggering methods.
- Additional applications on further selected weather events and regions.

a) Daily precipitation (mm/day) from ensemble of forecasts

INPUT DATA

- Forecast data (e.g. from ECMWF ensemble prediction system (EPS) or optional data from other regional or global NWP models)
- Reanalysis data (e.g. ERA5)
- Observational datasets (e.g. tide gauges)

Figure (a): forecasted daily precipitation in mm for different members obtained

from the ECMWF EPS data.

Figures a)-d) shows an example of the OPTI-THRED triggering method applied on the extreme precipitation event over Gävle, Sweden (17 August 2021)

b) Measure of intensity (fraction over threshold)

2.0

1.8

1.4

1.2

DETECTION METHOD

- Threshold based methods calculated from:
 - Precursors of the event
 - Climatological information
- Machine learning techniques
- Different risk index analysis

TRIGGERING INFORMATION

- Output information categorised in risk/alert levels:
 - Two level case (*no extreme extreme*)
 - Multiple risk level case (*no/low risk to high risk*)

Figure (d): Multiple risk levels assigned to the extreme precipitation event

d) Risk levels

Figure (b) & (c): mean intensity and probability derived from OPTI-THRED

of an extreme precipitation event.

Event	Detection method	Responsible
Storm surge/tide	Surge-ThreshPB	TalTech (Estonia)
	StormSurgeDetector (SSD)	ARSO (Slovenia)
Extreme precipitation	Optimised threshold-based event detection (OPTI-THRED)	SMHI (Sweden)
Extreme temperatures & winds	Extreme Forecast Index (EFI)	GeoSphere (Austria)
Wildfires	Combined FWI index	CHMI (Czech Republic) NIMH (Bulgaria)
Drought	Combined precipitation and temperature index	CHMI (Czech Republic)
Spring frost	Combined meteorological and vegetation index	CHMI (Czech Republic)
Thermal	Combined meteorological index	NIMH (Bulgaria)

EXTREMES DT PARTNERS

- High-resolution NWP downscaling
- Impact models, e.g. hydrological models
- Further post-processing procedures

Detailed information about the triggering methods

