

Funded by European Union

DESP forerunner: harmonised earth data provision

Alessandro Amici <<u>a.amici@bopen.eu</u>>

B-Open - https://bopen.eu

Company presentation

B-Open at a glance

- Technology partner for monitoring the health of the planet
 - \rightarrow Python scientific and geospatial ecosystems, Open Source
 - \rightarrow Earth observation, weather & climate, innovative algorithms
- Team of 20+ software engineers
 - \rightarrow Ph.D. and masters in Physics, Mathematics, Engineering
- Yearly revenues around €2-3M
- 20 years experience, ISO 9001 certified, based in Rome

Main customers and projects

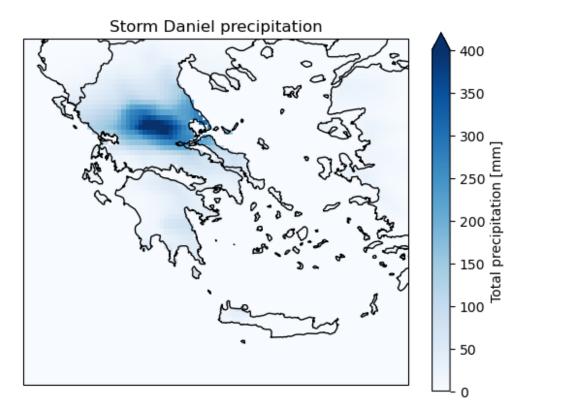
• ECMWF

 \rightarrow Copernicus: Climate Data Store

• ESA

- → DestinE: Harmonised Earth Data Provision forerunner
- → Copernicus: Transformation framework
- EUMETSAT
 - \rightarrow Data Tailor Web Service
- Open source
 - → Xarray and Zarr contributors (sponsored by Chan Zuckerberg Initiative)
 - → B-Open projects: Xarray-Sentinel, Sarsen (sponsored by Microsoft)

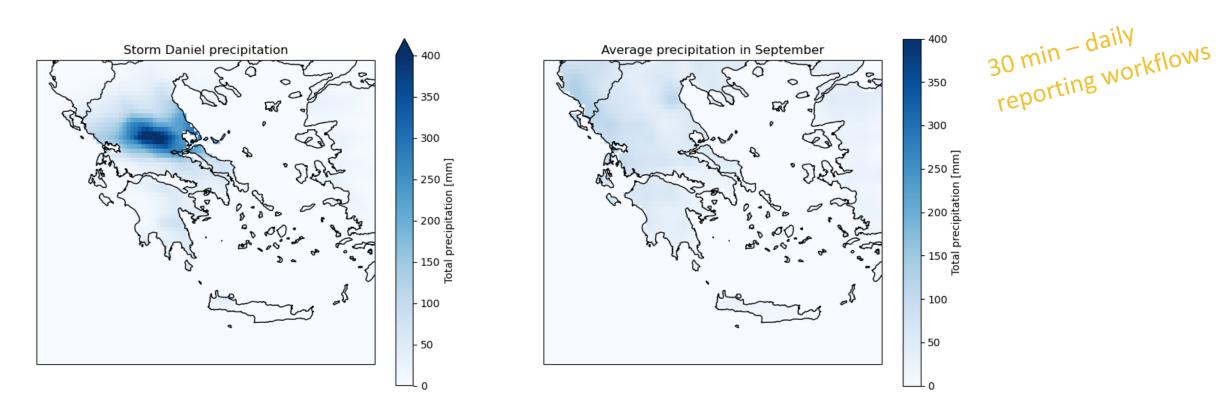
HEDP data access forerunner


Climate data store (CDS) of the Copernicus climate change service

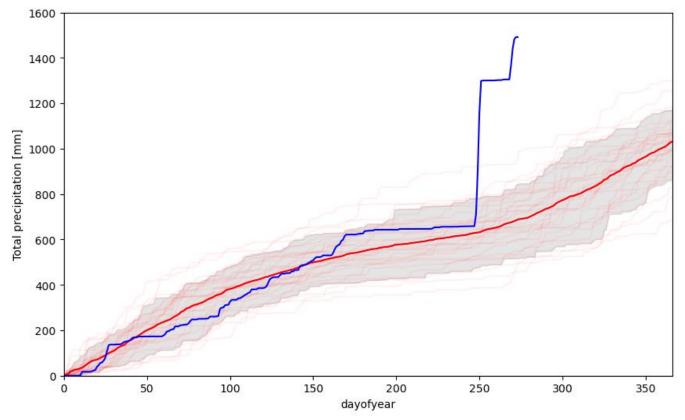
- Quality controlled climate datasets: ERA5, SEAS, CMIP6, etc
- World scale: 250k users, 10k active users / day, 150Tb download / day
- Storage based on ECMWF MARS archive and global fields in GRIB format
- Advanced features: data selection and transformation, fair queuing
- Pain points:
 - \rightarrow slow access to time-series
 - \rightarrow complex request language
 - ightarrow advanced processing means queuing

Use case: Greece floods from CDS

Map precipitation in Greece 5 and 6 September 2023 (ERA5 Land)



Use case: Greece floods from CDS


Compare precipitation in Greece to 1990-2019 September average (ERA5 Land)

Use case: Greece floods from CDS

Compare accumulated precipitation over Thessaly to 1990-2019 (ERA5 Land)

Challenges of weather and climate data access

• Domain needs:

- \rightarrow Petabyte scale (climate), terabyte scale with frequent updates (weather)
- ightarrow Large user community with wildly disparate access patterns

• Technical challenges:

- \rightarrow No de-facto standard protocol for rich data access and transformation
- \rightarrow No one-size-fits-all storage granularity
- Current solutions
 - \rightarrow Complex: custom data access protocols
 - \rightarrow Slow for some use cases, typically time-series

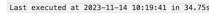
Goal: A optimised solution to support Platform local analysis of the data

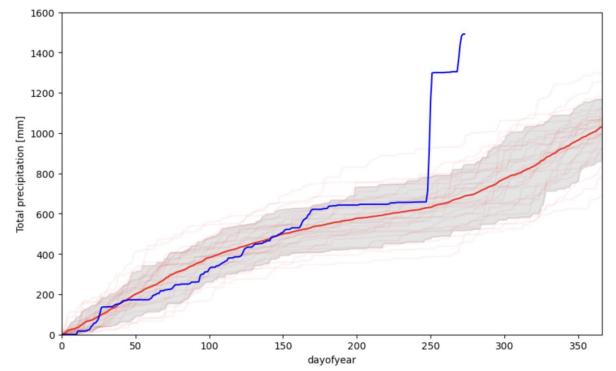
Users needs for modern data access:

- use cloud native data formats: STAC, Zarr, Cloud optimised GeoTIFF, TileDB
- support cloud native processing: Dask, Xarray, Pandas
- simplify the user experience
- use optimal data granularity for users support interactive time-series analysis

DESP advanced data access for users

Roadmap:


- Forerunner service with supporting catalogue
- Integration as a core DESP service
- Add DestinE data to catalogue
- Operation in June 2024


import xarray as xr

ds = xr.open_dataset(
"s3://ecmwf-era5-land/reanalysis-era5-land.zarr", engine="zarr", chunks={}

location_year = ds.tp.sel(**location).sel(time=year).isel(step=23).groupby("time.time")[datetime.time()].compute(location_reference = ds.tp.sel(**location).sel(time=reference_period).isel(step=23).groupby("time.time")[datetime

display.compare(location_year, location_reference, ylim=[0, 1600])

Main catalogue:

- DestinE Climate DT
- DestinE Extremes DT
- Supporting datasets:
- C3S: ERA5
- CMEMS: Global Ocean Physics Analysis and Forecast
- Copernicus satellite products

Thank you for your attention

