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pesTiNaTiON EARTH - EXtremes, wind energy, post-processing - How To?

What extremes do we consider?
— High persistent wind speed exceeding defined thresholds
— High persistent wind speed exceeding defined thresholds and large spatial coverage
— Gustiness (EFI index for wind gusts)
— Ramping

What do we need for wind energy post-processing?

How does the planned triggering workflow work?

* Use cases, lessons learned, user integration & outlook

< ECMWF



DESTINATION EARTH Workflow post-processing in DE_330- How To?

Storm Ciaran, forecast ECMWF IFS 1.11.2023, O0UTC, for 2.11.2023 13UTC
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DESTINATION EARTH Importance of metadata - short
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DESTINATION EARTH

Approach

The analog method: requires a
relatively moderate-size dataset
(usually a year-long).

The Kalman filter algorithm: the

recursive one, so the training period

can be relatively short (e.g., a few
weeks). It requires solid-quality
almost real-time measurements.

Input data:

o  NWP model output data

O  measurements of target
variable

Target: wind speed/power data

< ECMWF

Methods

Analog method: based on the search
for the most similar forecasts in the
training period. The verified
observations of analogs are used to
generate new forecast. Additional
improvements upon the starting
analog-based forecast:

O  weight optimization
o correction for high wind speed.

The algorithm inspired by the Kalman
filter: uses recent past forecasts and
observations to improve current raw
forecast. By optimizing some of the
algorithm parameters, additional
forecast improvements can be shifted
to more extreme events.

Methods - statistical post-processing
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DESTINATION EARTH

Approach:

Running window: using the last 45 - 90 days to
train a model

Future, generalized ! (semi-synthetic) historical
production data, multi-year with attention which
will be re-fitted with every use-case/triggered case

Features:

o produced power, synthetic (real) of the past
day (2-hours)

o NWP model data: ECMWEF-IFS and/or LAM
o Non-linear feature generation

Target: (semi-)synthetic (real) power data, wind
speed at hub height if needed/wanted

< ECMWF

Methods - machine learning based post-processing

Methods - multi-model ensemble:

Multi-linear regression with non-linear features
Y'=Bo+ B Xy + B Xo + -+ ¢

Random forest
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XGBoost regression

Fully connected multilayer perceptron neural
network e = = =

Currently evaluated: sequence-to-sequence LSTM
model
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DESTINATION EARTH

The area

Complex coastal terrain prone to downslope
bora windstorms - the main wind energy
resource in the area

Exceptional temporal and spatial bora wind
varibility reaching hurricane 5 scale gusts

Excellent test area for VHR modelling
experiments & demonstrations related to
strong winds

Srednja godiinja gustoéa snage (W/m’)
Visina: 80 m iznad tla
Razdoblje: 1992-2001

Mean annual power density (W/m?)

Autori/Authors:
dr. sc. Alica Baji¢
dr. sc. Kristian Horvath

mr. sc. Stjepan-ivatek-Sahdan
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Use case 1and 2 - Croatia

Case wind energy - location

Next step application of
methods to synthetic wind
farm data (wind speed, power)

Description Croatia target region - results to come

Name # type hub 2} Cut-
turbines height in/cut-

out
[m/s]

CRO 8 Siemens 80 93 3.5/25.0

LOC1 SWT 2.3

CRO 8 Siemens 100 101 3.0/20.0

Loc 2 SWT 2.3




DESTINATION EARTH Use case 2 - (Northeastern) Austria

Triggering - event + wind farms in region of event

Model pipeline:
o pre-processing input data

Model data retrieval
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DESTINATION EARTH Lessons use cases and what is missing

Lessons learned:

Metadata retrieval, i.e. location and wind turbine specifications, is a hart nut to crack esp. if no
direct connection to owner/maintainer exists.

Synthetic data generat
(hardware speaking) ge

For fast and on-the fly predictions, methods need to be able to either generalize or be ,simple"
methods able to work with only a few training data.

Workflow needs to be faster for shorter warning periods! psting service] for local

Missing:

Coupling with c,/c, curve estimation developed by FMI.

Wakes in wind farms: add ,parametrization” in post-processing for wakes.
Fast access to ERA5 data for the generation of synthetic data.

Fast access to historic ECMWEF/LAM forecasts for model training.
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DESTINATION EARTH User integ ration

What are the specific needs of the users, how can we engage communication to not end up in our
scientific bubble?

*  How much in advance to we have to detect/trigger? = This defines our forecast horizon

*  What temporal frequency is needed? 10min, 15min,..

* How do we overcome the metadata issue?

* What's the incentive to engage? Do we need to better highlight the benefits of this work?

*  Feedback on predictive skills/usefulness of the (possible) users: how valuable is the model? What
is the added value?

*  Forecasting (workflow) game?

< ECMWF 10



DESTINATION EARTH Outlook and next steps

Integration of wakes in synthetic data generator (should enable the post-processing forecasting models
to ,learn")

* Implementation of a spatio-temporal-attention transformer and bayesian neural network

e Transferable model": model trained on huge data set of (semi-synthetic) historical production data
across Europe, multi-year with attention (location, type, hub height, etc.) which will be re-fitted with every
use-case/triggered case, transferable also to unknown sites

e  Spatial nowcusting-to-intru-duy model (ConvLSTM) for appr. hub height wind speed, longer lead times

Input

T=+10 T=+11 T=+12

Target

Scheepens et al.
(2023)
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