

Destination Earth On-Demand Extremes Digital Twin -**On-Demand Extremes** simulations of air quality

Marcus Hirtl & The On-Demand Extremes Team on the air quality impact model

2nd Destination Earth User eXchange, Bonn, Germany, 13 and 14 November 2023

DE_33070 Impact modelling – Air Quality

Air pollution is a major cause of premature death and disease, and is the single largest environmental health risk in Europe.

Air Quality models are important for air quality management systems:

- they are widely used by agencies tasked with controlling air pollution (e.g. predict ozone exceedances)
- identify source contributions to air quality problems
- assist in the design of effective strategies to reduce harmful air pollutants.

Global and **regional** modelling of air pollution -> CAMS (global and LAM) + NMS

DE_33070 Impact modelling – Air Quality

Added value of the Air Quality model setup

Connection between regional and city-scale. Due to very high resolution:

• Local meteorological conditions (low inversions, complex terrain)

• Individual sources and source groups can be better resolved

Depending on the selected use cases and domains, information on required **meteorological data** (from NWP On-Demand Extremes groups), available other input (e.g. **emissions**) and data for **model evaluation** (ground observations of pollutant concentrations), was collected.

Summer use case 2018

Maxima of the official measurements of ozone in μg m-3 from July 24th to July 28th 2018

Winter use case 2017

Extreme Digital Twin – Air Quality Impact Model

PLANNING OUTDOOR ACTIVITIES

What would be a good location in vicinity of the city avoid air pollution during the weekend? To which altitude I would have to hike up the next days to escape from the high air pollution in the valley to have a good view and healthy air?

CECMWF

Extreme Digital Twin – Air Quality Impact Model

PLANNING OUTDOOR ACTIVITIES

Due to the weather conditions, we expect the maximum of the ozone plume south of the city on Saturday, northern parts have much better air quality on that day, on Sunday the situation is worse in the whole region. We suggest Saturday for outdoor activities.

We advice to climb up altitudes above

- 300 m on the 22nd Feb
- 600 m on the 23rd Feb

to reach "clean air", which lies over the inversion in the valley.

DE_33070 Impact modelling – Air Quality

The emphasis of phase 1 of On-Demand Extremes is to prepare the individual AQ-models for sub 1 km resolutions, to harmonise input data and output data formats amongst models and to show the added value of the applications to stakeholders.

Task 33071: Requirements definition

Task 33072: Input data collection and preparation

Task 33073: AQ-model setup and demonstration region

Task 33074: Implementation of the on-demand configurable system and application for use cases

Task 33075: Ensemble development

Task 33076: Evaluation

Year	Year 2022							Year 2023												Year 2024			
Semester	Semester 2-2022						Semester 1-2023						Semester 2-2023						Semester 1-2024				
Month	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
Month no.	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18	M19	M20	M21	M22	
WP7 Impact model	ling - Ai	r quality																					
Task 1						D7.1.1																	
Requirements						M7.1.1																	
definition																							
Task 2 Input data						D7.2.1																	
collection and						M7.2.1																	
preparation						M7.2.2																	
Task 3 AQ-model												D7.3.1											
setup and												M.7.3.1											
demonstration																							
region																							
Task 4																					D7.4.1		
Implementation of																					M7.4.1		
the on-demand																							
configurable																							
system and																							
application for use																							
cases																							
Task 5 Ensemble												D7.5.1											
development																							
Task 6 Evaluation																					D7.6.1		
																					M7.6.1		

Implementation for the on-demand configurable system and application for use cases

- The modelling groups will adapt and develop their run scripts and environments in a way that it is possible to set up model runs (domains, grid etc.) and to start the whole modelling chain from pre- to post-processing via a harmonised input file. The format and content of this file will be defined in this task.
- The models WRF-Chem and CMAQ will be set up to run next to the On-Demand Extremes hyper resolution NWP model on the same platform. The models will be implemented with a horizontal resolution of 750 m.
- The **quasi-operational environments will be used to run the models for the selected use cases** which will be simulated in this task by all modelling groups. All model outputs will be prepared in a pre-defined data format and further used to evaluate the model performance.
- The concept of how end-users could use the tailored products of the on-demand AQ-impact model in future phases of DestinE is that they will have flexibility, e.g. the freedom to set up their own modelling domains.

DESTINATION EARTH

Summer case - preliminary results

Modelled ozone maximum concentrations for different resolutions

WRF-Chem model setting: HARMONIE-2500m Forecast interval: 23.07.18 00:00 - 27.07.18 23:00

WRF-Chem model setting: HARMONIE-750m Forecast interval: 23.07.18 00:00 - 27.07.18 23:00

ECMWF

Summer case - preliminary results

Modelled ozone concentrations for selected urban stations

Comparison between HARMONIE-driven WRF-Chem simulations and CAMS-Global atmospheric forecasts

Summer case - preliminary results

Emissions

* Sectors included

ECMWF

- 180 52°N

Annual emissions of NOx (High-res emissions RIVM)

* Sectors included: B Industry, K April ivestock, D Funitive, I Offroad, F RoadTransport

Upcoming

• Analysis of the use cases

- Final adjustments to the NWP-AQ interface
- o Ensemble
- Evaluation
- Phase II
 - o Tasks:
 - Emission preparation
 - Further model development toward sub km applications
 - (Quasi-)Operationalisation
 - Triggering
 - Output preparation / dissemination / end user needs
 - Evaluation

WP3 main objectives

- · Providing the best configuration available of the forecast and assimilation per al Co-Deman Extremes DT by Setting up the interact configuration parameters is least the attain approximate of one legal insultation formulation that using attack developed autoenty
- Adapting it deloging tome furnituration from which an could have it house require · Dynamics, physics and surface model configurations will be tested and handed over to DE_10050 that implements the On-Demand Extremes DT workfrom.
 - · Some task will be to prepare for the fulure phases
 - · The 4D-liter and EnVAR approaches from the ACCORD community are played to be tested and implemented

AC made

0

Thank you!

