

ATLANTIC SENSE

Towards an integrated geospatial intelligence solution

Caio Fonteles¹, Bruno Marques¹, Ana Oliveira¹, Francisco Campuzano¹, Inês Girão¹, Paula Salge¹, Pedro Almeida¹, Renato Mendes¹, Sofia Aguiar¹, Tiago Garcia¹, and all the +ATLANTIC CoLAB TEAM

¹ CoLAB +ATLANTIC, Museu das Comunicações, Rua do Instituto Industrial 16, 1200-225 Lisboa, Portugal

ABSTRACT

As we live in an era of big data acquisition satellite, in-situ, wearables -, climate change and environmental risks have become much easier to map. On the other hand, domain knowledge is usually supplied by the offering academic sector, novel methodologies for hazard mapping and predictions, albeit being hard to translate those scientific-driven findings for the public administration, and society at large. Hence, public policies and public domain knowledge, including the implementation and monitoring of regulatory frameworks, often lag behind the scientific state-of-the-art. As such, citizens are left 'in the dark' about the environmental or climatic risks surrounding them, even though about 40% of the world's population lives within 100km of the coast, subject to sea level rise, or exposed to other weather and climate extremes such as heatwaves and droughts. Furthermore, the pressure for further urbanisation and the efforts to preserve its rich natural capital are often at odds.

Atlantic SENSE builds upon these notions to leverage the state-of-the-art scientific knowledge on data acquisition, machine learning (ML) and metocean predictions to address the key environmental and climatic challenges we face, to become a live platform with real-time natural hazards and risks available information, readily the to community.

The main objectives of the work are:

OBJ-1: Offer an integrated geospatial information web-based tool for municipalities and citizens.

OBJ-2: Translate geospatial and in-situ data

into impact indicators on multiple climate and environmental hazards.

OBJ-3: Ensure scalability, transparency and affordability of the results.

DATA AND METHODS

6

Present and future Maritime Public Domain.

Mira, Portugal

Economic value in Maritime Public Domain

(2022 and future)

Cascais, Portugal

Development of an Advanced Pipeline for High-Resolution Land Use Land Cover Classification and Carbon Stock Estimation: in approach for showcasing the statistical distribution per class and biomes Inês Girão¹, Manvel Khudinyan¹, Rita Cunha¹, Ana Oliveira¹ CoLAB +ATLANTIC, Museu das Comunicações, Rua do Instituto Industrial 16, 1200-225 Lisboa, Portug

ATLANTIC SENSE

Active Layers	\otimes	Add Layers		
Flooding Susceptibility Index [FSI] (n/a) 🐵	() = ⊚ ×	Area 🗸	Theme ^	Variable
🔴 Very Low 🥚 Low 😑 Median 🔴 High 🔴 Very High 🌰 Extreme				
Heat Wave Frequency Trend [1950-2018] (days/decade) 👳	() = ⊚ ×	m	6	Q
< -4 -34 -32 -21 -1 - 0 0 - 1 1 - 2 -1 - 5 >=5	2 - 3 📕 3 - 4	find	5	O T
		Ocean	Air	Land
	SP North			
1 Allen Mary	Junife a	Lisbon Air Temperature Model ∧ Shoreline Trend ∨		
1 ABSSA TOWNS	a former	💮 Shoreline Trends		
		Extreme Sea Level 🗸		
		Flooding Susceptibility Index [FSI]		
CARD-Start Card	Same and the second	National Air Temperature Extremes 🗸		
- ASSACT SAME		Average Heat Wave Amplitude [1991-201		
State Marker	THE REAL PROPERTY	🕀 Average Hea	at Wave Frequenc	cy [1991-20
- ASSESSO	A House	Heat Wave Amplitude Trend [1950-2018]		
- ANATAL		Heat Wave Frequency Trend [1950-2018]		

RESULTS

Building upon the results of several projects and initiatives, such as Horizon Europe (EC), Destination Earth (ECMWF and ESA) and EU Digital Twin Ocean (Mercator Ocean International), the proof-ofconcept of the Atlantic SENSE concept has been deployed over mainland Portugal. Furthermore, in the scope of the PRR New Space Portugal Agenda, a participatory approach with early adopters has kick-started to ensure fitness for purpose. Currently, several modules

- AIR: temperature extremes health indicators, urban heat island
- LAND: land use/land cover change monitoring, ecosystem
- COAST: coastal erosion monitoring, coastline evolution, sea level
- OCEAN: physics and biogeochemical forecasts of ocean health