DESTINATION EARTH DIGITAL TWINS AND DIGITAL TWIN ENGINE

Irina Sandu, on behalf of ECMWF and its many partners

Countries 26 90 Organisations

Tunded by the European Union Destination Earth implemented by CECMWF Cesa CEUMETSAT **Funded by**

THE DIGITAL TWINS: UNIQUE BESPOKE SIMULATION CAPABILITY

To assess the impact of certain events or scenarios on climate and extreme events, and provide global information at scales where these impacts are observed

THE DIGITAL TWINS: UNIQUE BESPOKE SIMULATION CAPABILITY

To assess the impact of certain events or scenarios on climate and extreme events, and provide global information at scales where these impacts are observed

To operate complex Earth-system and impact-sector workflows on EuroHPC, and provide software solutions and services for accessing, handling and interacting with the digital twins and their data

CLIMATE DT: 1ST OPERATIONAL CAPABILITY FOR CLIMATE PROJECTIONS

Current climate projections

- ✓ Limited resolution (~100 km)
- ✓ Small-scale processes not represented
- ✓ Run through research efforts
- ✓ Updated in 7-10 year cycles
- Separation of Earth System Models and impact sector models

Climate DT

- ✓ 5-10 km resolution; allowing to explore the weather of the future
- ✓ Global information with local granularity
- ✓ Flexible on-demand operational production
- ✓ Regular operational production
- Bringing Earth System Models and impact sector models within the same workflow

SC	CSC – IT Center for Science	- FI
SC	Barcelona Supercomputing Center/Centro Nacional de Supercomputación	ES
MPI - M	Max Planck Institute for Meteorology	DE
JH	University of Helsinki	FI
WI	Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research	DE
NR-ISAC	Consiglio Nazionale delle Ricerche, Instituto di Scienze dell'Atmosfera e del	IT
	Clima	
OLITO	Politecnica di Tarino	IT.
MI	Finnish Meteorological Institute	FI
WD	National Meteorological Service of Germany	DE
JFZ	Helmholtz Centre for Environmental Research	DE
CLouvain	Université catholique de Louvain	BE
)KRZ	German Climate Computing Centre	DE
IPE	Hewlett Packard Enterprise	FR

DESTINATION EARTH

CLIMATE DT: 1ST OPERATIONAL CAPABILITY FOR CLIMATE PROJECTIONS

3 global climate models at ~5km

DESTINATION EARTH

implemented by CECMWF CESA CEUMETSAT

CLIMATE SIMULATIONS

historical

Model in good agreement with historical temperature change

climate projection

~1.5 °C warming from 2020 to 2050

CLIMATE DT: STORYLINES OF EXTREME EVENTS

implemented by CECMWF COSA CEUMETSAT

+2°C

See Amal's talk

IFS-FESOM with large-scale nudged towards ERA5 (2018-2023)

EXTREMES DT : A MAGNIFYING GLASS ON EXTREME WEATHER EVENTS

IFS-NEMO

EXTREMES DT : A MAGNIFYING GLASS ON EXTREME WEATHER EVENTS

Current weather forecasts	Extremes DT	
 ✓ Still limited resolution (~10 km global, 2.5km regional) ✓ Operational production of daily forecasts 	 ✓ 4.5 km resolution globally; 500 - 750 m regional ✓ Operational capability to run simulations both regularly and on- 	
 Fixed configurations, domains, outputs 	 demand for past, present and future extreme events Flexible configurations, domain, outputs allowing to respond to evolving extreme events by triggering tailored simulations 	
 Separation of Earth System Models and impact sector models 	 Bringing Earth System Models and impact sector models within the same workflow 	

DESTINATION EARTH

EXTREMES DT

See Extremes DT session

DTS AND DTE: PHASE 1 DELIVERY

- ✓ Set up Digital Twins workflows on EuroHPC platforms
- $\checkmark\,$ Demonstrated DTs initial capabilities, data access and handling

WHAT'S NEXT?

- $\checkmark\,$ Towards operationalisation of digital twins and digital twin engine
- ✓ Models, workflows, data handling upgrades
- ✓ AI models and AI software-layer

BUILDING AN AI EARTH SYSTEM MODEL

EXPANDING TOWARDS AN EARTH-SYSTEM AI MODEL WITH DESTINE

FIRST EXCITING RESULTS

Physical wave model

Prototype ML wave model

Al forecasts in a warmer world

EXPLOTING AI IN DESTINE

Quantify uncertainty

Around DestinE simulations and overcome high computational costs.

Forecast in a box

To augment DestinE's interactive features.

LLM - Chatbots

To enhance the access to complex information.

DESTINE DIGITAL TWINS AND DIGITAL TWIN ENGINE

- \checkmark Offer a capability to test scenarios and what-if questions
- ✓ Provide detailed earth-system and impact-sector relevant information regularly and on-demand
- ✓ Provide the software solutions and services to access, handle and tailor the digital twin data
- ✓ The digital twin data feeds the next generation of AI models and applications
- ✓ Enable easy exploitation of this data through its AI-enabled software layer

