

the European Union Destination Earth implemented by CECMWF Cesa EUMETSAT

DESTINATION EARTH CLIMATE DT: MODEL EVALUATION

The AQUA Team

(Pa)

(D)

CLIMATE MODEL SIMULATIONS

Evaluating climate models is a challenging task, especially considering the **big-data demands** of ClimateDT. Different stakeholders focus on varied aspects: local phenomena, climate sensitivity, temperature trends, or extremes, so that unique answer is hard to deliver.

Such complexity calls for **objective diagnostics combined with human interpretation**. **AQUA software** helps streamline the process, providing **key** metrics and solving most of the technical issues.

	Experiment	Years	Atm Resolution	Oce Resolution
CON	historical-1990	1990-2015 (running to 2020)	10 km	5 km
	SSP3-7.0	2020-2035 (running to 2040)	5 km	5 km

	Experiment	Years	Atm Resolution	Oce Resolution
IFS-NEMO	historical-1990	1990-2002	10 km	1/12 degree
	SSP3-7.0	2020-2040	5 km	1/12 degree

IFS-NEMO zonal wind vertical structure of lood with moderate disclaimer:

ICON has some issues in the **pressure** level structure in Southern Hemisphere, with overly strong upper-layer westerly jet stream

a compact metric to evaluate the model mean climate.

Model climatology - observational climatology

Observation variance

They can be **normalized** toward an "average" value which in our case is CMIP6 model multi model mean

PI < 1: the model is doing a good job compared to average CMIP6 models

PI > 1: the models is doing worse than the average of CMIP6 models

IFS-NEMO shows a larger negative temperature bias in polar regions, associated with to overestimated sea ice. Precipitation is well represented.

ICON shows a positive temperature bias at high latitudes and over NH continents, with precipitation overestimated in the Indian and Atlantic oceans, along with traces of a double ITCZ.

Contact us:

<u>silvia.caprioli@polito.it</u>, <u>p.davini@isac.cnr.it</u>

<u>github.com/DestinE-Climate-DT/AQUA</u> (code will be open source soon)

CON - historica 1990-01-01 - 2019-12-31 average

The cold shock in the IFS-NEMO run is due to a negative drift in surface and mid-ocean temperature, likely because the **oceanic model is not in** equilibrium. This results in excess sea ice in the Northern Hemisphere.

1994

1996 1998 2000 2002 2004 2006

ICON conversely shows a clear warming of all oceanic layers as in observations, but this is likely **overestimated** suggesting a too large climate sensitivity

Positive aspects

- Very good mean climate despite global surface temperature bias in IFS-NEMO
- High level of details in atmospheric and oceanic circulation in both models especially in IFS-NEMO
- On average both ICON and IFS-NEMO performance indices **better** than the **average of CMIP6** output

Things to be improved

- Too cold 2m-temperature in historical and lack of warming in scenario likely due to suboptimal tuning (IFS-NEMO)
- Excessive precipitation in tropical areas (ICON)
- Wrong pressure patterns in Southern Hemisphere (ICON)
- Preliminary tests after careful tuning on IFS-NEMO reduced the cold temperature bias for Phase 2

