

DIGITALT Schaafenstrasse 25, 50676 - Cologne, Germany **email:** info@digitaltwin.technology Phone: +49 221 398808 40

# Dynamic Digital Twins for Smart and Sustainable City Planning

Tarigul Islam, Jyothi Pudota, Deepti Desai, and Rahul Tomar

DigitalTwin Technology GmbH, Cologne, Germany

# Introduction

Digital Twins (DTs) are the dynamic digital replicas of real-world objects. DTs are updated with real-time data, unlike static 3D models.

## Advantages of DTs:

- Evolve with real-world events
- · Practical in situations where testing on physical models are not feasible

#### Works done:

- Developed city-scale DTs within the EU-funded "DIDYMOS-XR"1 project
- · Developed two use cases DT creation and City planning for XR applications
- Developed 3D city model using state-of-the-art methods (NeRF<sup>2</sup>, 3D Gaussian Splatting<sup>3</sup>) and tools (e.g., Blender<sup>4</sup>)
- · Developed localization techniques using both non-visual and visual sensor data for the DT
- Developed visualization and rendering pipeline for the DT using cutting-edge tools (Unity3D5, Carla6, WebGL)

## Developed technology and pipeline for the DT

Figure 1 shows an overview of the processes and technologies that have been in development and incorporated to bring the city-scale DT into reality. Below, a brief summary of these technologies are presented.

#### Data Acquisition:

- 3D data collected via drones, LIDAR sensors, and cameras.
- Integration of non-visual sensor data (GPS, Odometry) and GIS databases.
- Refining initial point clouds to create high-fidelity 3D assets.

#### 3D City Model Creation:

- Methods: Combination of automatic AI methods (3D Gaussian splatting, NeRF) and further refinements using tools like Blender.
- Incorporation of textures, vegetation, and road networks for realism.

#### Data Updates:

- Periodic updates using vehicle/drone sensors (cameras, GPS, odometry).
- Techniques: Sensor fusion for 3D reconstruction, 2D segmentation, object detection.

#### Localization of vehicle in DT: Using a combination of -

- Non-visual sensor data (GPS, Odometry) and Monte Carlo Localization<sup>7</sup>
- Visual sensor data using Image-based localization (IBL) and HSLAM<sup>8</sup> for high-accuracy self-localization.



Figure 1 Overview of the processes and underlying technologies incorporated into the creation and update of the DT, City planning use case (weather, traffic simulation), and immersive DT in VR setup.

## Simulation aspects and outputs

Below a brief description of the simulation aspects and selected outputs are presented.

Simulation Frameworks:

- Unity3D and Carla to integrate DT into urban simulation environments. Scenario Simulations:
- Analyze weather, traffic patterns, and smart infrastructure elements.
- · Manipulate parameters like vehicle speeds, traffic densities, and environmental conditions.
- Figure 2 shows sun and rain simulation with options to simulate sun and rain intensity variations and historic weather data visualization



Figure 2 Weather simulation in the DT - left image shows sun simulation and the right age shows rain simulation with various parameters to change

## **Testing and Evaluation:**

- Evaluate "What if" scenarios and assess impacts of adding or removing assets (e.g., building, vegetation), traffic lights, and such.
- · Evaluate impacts on traffic flow and urban infrastructure.

## VR Integration:

- · Immersive pedestrian-level DT exploration via a VR framework.
- Facilitates deeper insights and enhanced decision-making for city planners.
- Figure 3 shows immersive DT in VR setup.



Figure 3 Incorporation of immersive navigation of the DT in VR. Here, functionalities of immersion while checking out various effects such as change of weather conditions.

## Conclusion

In this work, we have been developing technologies using cutting-edge AI techniques and tools towards a comprehensive urban planning approach, where:

- · the DT enable data-driven decision-making for urban planning.
- · the DT support the exploration, evaluation, and optimization of city planning scenarios.
- The DT can be explored and experienced in immersive extended reality, e.g. in VR
- The inherent benefits of the DT are, among others,
- sustainability of urban Enhanced efficiency, resilience, and environments.
- Support for city planners in making informed decisions on infrastructure development.

#### References

- Didymos-XR. (2024, 25. September). Retrieved from Didymos-XR: https://didymos-xr.eu/. Mildenhall, B. S. et. al. (2021). Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 99-106.
- Communications on the ACM, 99-106.
  Kerbl, B. a. et. al. (2023). 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics.
  Blender. (2024, 25. September). Blender a 3D modelling and rendering package. Retrieved: http://www.blender.org.
  Unity3D. (2024, Sep. 16). Retrieved from https://unity.com.
- Dosovitskiy, A. R. et. al. (2017). CARLA: An open urban driving simulator. Conference on robot learning, 1 - 16 (pp. 1 - 16). Dellaert, F., et. al. (1999, May). Monte carlo localization for mobile robots. In IEEE international conference on robotics and automation
- Georges Younes, D. K. et. al. (2024). H-SLAM: Hybrid direct-indirect visual SLAM. Robotics and Autonomous Systems.

# **Acknowledgements**

DIGITAL TWIN DIDYMOS XR

This work has received funding from the European Union under Grant Agreement No. 101092875

Destination Earth the European Union Cesa 🗲 EUMETSAT Implemented by CECMWF