

Extending the Destination Earth ecosystem with biodiversity digital twins

Dirk Pleiter (KTH)

Third Destination User eXchange, Darmstadt, Germany

16.10.2024

- BioDT is developing **prototype digital twins** in the area of biodiversity based on
 - Advanced models and prediction capabilities
 - Modern digital infrastructure services including HPC
- Project objectives
 - Build and deploy a pre-operational BioDT for addressing biodiversity dynamics
 - Support the interoperability of data and services through the integration of the BioDT with research infrastructure platforms and workflows
 - Ensure interoperability of the BioDT with Destination Earth, and the European Data Infrastructure

- Grassland biodiversity dynamics
- Forest/bird biodiversity dynamics
- Real-time bird monitoring with citizen science data
- Cultural Ecosystem Services
- Crop wild relatives and genetic resources for food security
- Genetically detected biodiversity in cryptic habitats
- DNA detected biodiversity, poorly known habitats
- Invasive species
- Disease outbreaks
- Honey bee dynamics in agricultural landscapes

ttps://app.biodt.eu/app/biodtshiny

- **Goal**: Facilitate interactive exploration of honey bee dynamics in different agriculture landscapes
- Input:
 - Land cover data
 - Weather data
 - Model parameters
- Model: Simulation models based on BEEHAVE
- Target end-users:
 - Beekeepers
 - Private companies
 - Policy-makers and environmental organisations

- Goal: Aid the search and utilisation of crop wild relatives' genetic resources
- Input:
 - Occurrence data
 - Environmental data including climate data
- Model: Collection of statistical models
- Target end-users:

- Agricultural researchers and plant breeders
- Conservation scientists

[A. Tolk, 2006]

Level	Description
0	Stand-alone systems have no interoperability
1	On the level of technical interoperability , a communication protocol exists for exchanging data between participating systems
2	The syntactic interoperability level introduces a common structure to exchange information
3	If a common information exchange reference model is used, the level of semantic interoperability is reached
4	Pragmatic interoperability is reached when the interoperating systems are aware of the methods and procedures that each other are employing
5	Dynamic interoperability : The systems are able to comprehend the state changes that occur in the assumptions and constraints that each other is making over time
6	All conceptual models are aligned at the conceptual interoperability level

- Advanced syntactic interoperability
 - Specifications largely driven by the relevant research infrastructures and data providers
- Semantic interoperability progressing
 - Extended biodiversity ontologies are available
 - Challenges beyond the biodiversity realm
 - No obvious issues related to operation of the BioDT DTs
- Pragmatic interoperability has largely not been formalised

- Data
 - Ongoing efforts towards improving FAIRness and standardisation of data cubes or RO-Crates
- Compute
 - Realise workflows based on LEXIS and HEAppE
 - Workflows components on HPC and Cloud (e.g. K8s)
- Various interoperability challenges at the digital infrastructure level remain, e.g.
 - HPC and cloud services integration not mainstreamed
 - Lacking integration of HPC and data infrastructures
 - AIM federation at an early stage

- Various BioDT digital twins have reached a pre-operational level
 - Ready to demonstrate the benefits of digital twins in the area of biodiversity
- Most of these digital twins can benefit of being coupled to Destination Earth
 - Climate, extreme weather events
- Interoperability remains a key challenge at different levels

Funded by the European Union