ECMWF – DESTINATION EARTH

Machine Learning and the DestinE Digital Twins

Joffrey Dumont Le Brazidec, Mariana Clare, Jakob Schloer, Martin Leutbecher, Matthew Chantry, Irina Sandu and all people involved in machine learning activities for DestinE at ECMWF and our DestinE partners

Х

joffrey.dumont@ecmwf.int

the European Union Destination Earth implemented by CECMWF CESA EUMETSAT

Funded by the European Union

Forecast-in-a-box

Providing a packaged system with data-retrieval, forecasting & postprocessing.

This system runs on local hardware or cloud and is delivered in a matter of minutes

It is configurable for Earth-System components and user-defined outputs.

ai-models web	the European Union Destination Earth Implemented by CECMWF Cesa EUMETSAT
Model: aifs ~	on Earth EUROAST
Date: 20240401	A SE A
Time: 12	De De
Lead time: 48	% Role
	uto hno
Ioken: Subn	t APHER WEATHER

New job id: 3ad48ead-a7a4-41a5-9170-54b8a2a4fd56

Job status: queued Job status: active Job status: ready

Forecast is ready!

Wednesday 10 April 2024 12 UTC ecmf t+12 VT:Thursday 11 April 2024 00 UTC 2 m 2 metre temperature

Downscaling ensemble members to km-scale resolutions (ongoing work)

- Generating km-scale large (>>10 members) global ensemble forecasts is crucial to quantify extremes
- Apply deep learning to produce high-resolution ensembles

 > several orders of magnitude cheaper in computation time than classic
 approaches

implemented by CECMWF CESA 🗲 EUMETSAT

Leverage uncertainty

- Of coarser ECMWF ensemble forecast products (such as the medium range ensemble)
- Given by the data distribution learned by the probabilistic approach

Summary of AI activities

Towards an earth-system machine learning model leveraging DestinE data

Developing end-to-end workflows for ML model components like land, ocean, sea-ice, hydrology

Enhance Digital Twin Engine with ML pipelines from training to post-processing

Using data-driven methods for uncertainty quantification of Extremes and Climate Digital Twin

Climate emulator to rapidly explore 'what-if' scenarios

Enhanced interactivity

Developing a forecast-in-a-box concept.

Building ML demonstrators for impact-sectors (e.g., health, agriculture, urban)

Develop of a weather and climate chatbot

CECMWF