DESTINATION EARTH

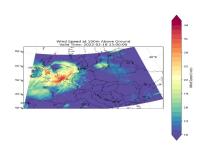
Post-processing for wind energy production: added value of hectometric NWP forecasts with NWP wind farm parameterization and targeted machine learning

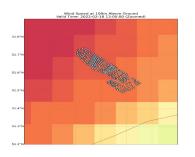
Irene Schicker¹, Evgeny Atlaskin², Geert Smet³, Iris Odak⁴, Natalie Theeuwes⁵, Meier Florian¹, Dieter Van Den Bleeken³, Joris Van den Bergh³

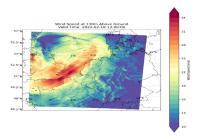
 $^1\mbox{GeoSphere Austria}$ (Austria), 2 FMI (Finland), 3 KMI-RMI (Belgium), 4 DHMZ (Croatia), 5 KNMI (Netherlands)

Post-processing for wind energy with focus on extremes:

- What are extremes for the different sectors (energy providers, wind farm operators, etc.) and how can we align them?
- Needs high spatial and temporal NWP data able to "see" the wind flow within and across wind farms including wakes
- Needs metadata (location, type of turbine, wind farm layout, hub height...) for both, NWP and post-processing for accurate depiction and predictions
- Needs training data but we can work with synthetic information based on metadata
- Needs to cover uncertainty






Want to know how we tackle that? → see us at the poster!

