

DESTINATION EARTH

URBAN HEAT USE CASE **OVERVIEW**

Nele Veldeman, Dirk Lauwaet, Filip Lefebre, **Wim Peelaerts**

VITO

Context

- Climate change leads to increasingly frequent and intense heatwaves in Europe
- Cities are especially at risk because of the urban heat island (UHI) phenomenon

Objectives

- Deliver high-resolution urban heat maps for cities across Europe to underpin and motivate urban climate adaptation measures that are being developed
 - Support EU adaptation policy intended to increase urban resilience against projected exposure to extreme heat
 - Support local administrations to take efficient heat stress adaptation measures at the most vulnerable locations

Average daily maximum WBGT during heatwave days [°C]. Source: VITO.

Urban Heat Service - Output

- Heat stress calculations for
 - 2011-2020 (ERA5)
 - 2020-2040 (Climate DT) at 100m resolution
- Advanced heat stress variables: WBGT, UTCI, Tapp
- Output indicators: UHI intensity, # tropical nights, # health heatwave days, Exposure to heatwaves, Heat-related mortality, Exceedances of health threshold levels, Lost working hours and Cool island identification
- Impact of climate adaptation measures: green roofs, light colouring, urban trees, soil unsealing, ...

Urban Heat Service – UrbClim model

Urban Heat Service – DestinE

- UrbClim will be nested within output provided by models in the Digital Twin platform
- UrbClim will access
 required data via the Data
 Lake
- The service will make use of the Digital Twin Engine interfaces
- The service will be provided via **Destination Earth's Services Platform**

Urban Heat Maps & Indicators

Average number of tropical nights

number of days during which the nighttime minimum air temperature is higher than 20°C

ERA5 2011-2020 Reference

ERA5 2011-2020 MAX scenario

IFS-NEMO SSP3-7.0 2031-2040

Urban Heat Maps & Indicators

Heat-related excess mortality

calculated based on the paper of Urban et al. (2022) where excess mortality in Prague is linked to daily average air temperatures

ERA5 2011-2020 Reference

ERA5 2011-2020 MAX scenario

IFS-NEMO SSP3-7.0 2031-2040

Urban Heat Island [°C]

Health Heat Wave Days

Days with UTCI > 26°C

Days with WBGT > 25°C

Heat-related mortality

Lost Working Hours for intense manual work

Tropical Nights

Impact Assessment

Impact of climate change

Heat stress indicators	Reference	2031-2040 SSP3-7.0 IFS-NEMO			
			Relative change [%]		
Urban Heat Island [°C]	2,11	2,11	0,00		
Health Heat Wave Days	5,97	5,28	-11,58		
Tropical Nights	6,96	11,99	72,20		
Days with UTCI > 26°C	178,77	184,34	3,11 23,34		
Days with WBGT > 25°C	13,85	17,08			
Lost Working Hours for intense manual work	12,14	29,99	146,96		
Heat-related mortality	228,52	257,24	12,57		
Impact of ada	aptation n	neasures			

1,96

5,35

6,25

184,11

12,97

11,04

209,83

1,92

6,00

4,81

175,60

14,16

12,64

209,78

2,09

6,07

6,60

157,65

11,47

9,07

227,05

1,70

6,22

3,23

140,26

10,18

7,73

186,58

-19,66

-10,42

-53,64

-21,54

-26,46

-36,32

-18,35

	Reference	Green Roofs	Light-colored mater	rials Soil unsealing	Urban Trees	Combination of all	Max impact [%]	
Heat stress indicators		Adaptation scenarios						
isbon Metropolitan Area - 2011-2020 annual average values (urban areas only)								
Impact of adaptation measures								
Heat-related	mortality		228,52	257,24	12,57			
Lost Working	g Hours for int	tense manual v	work 12,14	29,99	146,96			
Days with W	BGT > 25°C		13,85	17,08	23,34			
Days with U	CI > 26°C		178,77	184,34	3,11			

1,99

6,11

5,27

165,06

12,79

11,09

214,32

2,11

5,97

6,96

178,77

13,85

12,14

228,52

Lisbon Metropolitan Area - annual average values (urban areas only)

Conclusions

- Climate change will have a negative impact on most heat stress indicators, but the severity depends on which indicator you consider (air temperature and extreme eventrelated indicators are impacted the most)
- Locally applied adaptation measures can have a significant positive effect on (most) heat stress indicators
- For some heat stress indicators, the impact of these (very ambitious) adaptation measures is expected to be able to compensate for the climate change impact up to 2040
- There is **no 1 'fit-for-all' measure**, the combination of measures generates the strongest overall response
- But (outdoor) adaptation measures are no magical solution, at some point climate change becomes too strong to keep the status-quo => also focus on building-level measures, cool shelters, heat action plans,...

Outlook

- Project ends by the end of this month
 - Finish web platform
 - Start onboarding this service in DestinE Service Platform
- Proposal to continue this work in new Destination Earth project
 - Make it a service (any city in the world, full automatization, further integration in DestinE, small cost for users,...)
 - Add user-requested functionalities

 (e.g. very high resolution heat stress maps, customized adaptation measures, customized input data selection, ...)

https://stories.ecmwf.int/destination-earth-use-case/

nele.veldeman@vito.be - filip.lefebre@vito.be - dirk.lauwaet@vito.be

Extra slides

UrbClim validation

 UrbClim model results have been validated against 14 local measurement stations in Prague for the summer of 2022

https://golemio.cz/data/mikroklimaticke parametry

Comparison between observed and modelled daily average 2m air tem

UrbClim validation

 UrbClim model results have been validated against 22 local measurement stations in Lisbon (18 of AML) for the summer of 2022

https://clima.aml.pt/page/publico

Comparison between observed and modelled daily average 2m air tem

Climate DT projections

- The global climate models (3) of Destination Earth Climate
 DT run at an unprecedented spatial resolution of 5km
- Allow for flexible scenario calculations to study precise local impact
- For now only results for 1 model (IFS-NEMO) and 1 scenario (CMIP6 SSP3-7.0) available up to 2040
- For Lisbon: rather low impact compared to full CMIP6 ensemble
- For Prague: rather high impact compared to full CMIP6 ensemble

https://destine.ecmwf.int/news/climate-change-adaptationdigital-twin-a-window-to-the-future-of-our-planet

Adaptation measures

- The impact of 5 ambitious climate adaptation scenarios has been calculated
- Allowing to assess the maximal effect you can obtain with these types of measures and compare between them
- The measures are focused on the urban areas in the region and applied everywhere in an automated manner
 - => Previous results have shown that only the wide-spread application of measures is effective to reduce the overall urban heat stress in a city
- 1. Green roofs: all the roofs in the city are converted to intensive green roofs
- 2. Light-colored materials: the albedo of all build-up areas is changed to 0.3 (realistic white)
- 3. Soil unsealing: 50% of all non-building urban areas are unsealed
- 4. Urban trees: 50% of all non-building urban areas are under tree crown cover
- 5. Combination of all of these: maximum impact scenario

Urban Heat: Result maps

The number of lost working hours is based on ISO 7243: Ergonomics of the thermal environment — Assessment of heat stress using the WBGT index (https://www.iso.org/standard/67188.html). They are calculated for intense, moderate and light manual work

Average number lost working hours for intense manual work during the summer months. Source: VITO.

ERA5 2011-2020 Reference

ERA5 2011-2020 MAX scenario

IFS-NEMO SSP:

Urban Heat: Result maps

Cool area identification: based on daily maximum WBGT maps during heat wave days, the non-water areas that are below a threshold value (1.0°C below the spatial P90 value and less than 300m from an urban grid cell) are selected. The 1.0°C limit is taken as it is a very significant reduction of the WBGT, which can only be obtained in grid cells with a large tree cover. 300m is considered a doable walking distance for most people.

Urban Heat: Results for Prague - overview

Impact of climate change

Prague city area - annual average values (urb					
Heat stress indicators	Reference	2031-2040	SSP3-7.0 IFS-NEMO		
			Relative change [%]		
Urban Heat Island [°C]	1,29	1,29	0,00		
Health Heat Wave Days	8,93	8,55	-4,27		
Tropical Nights	16,18	31,44	94,36		
Days with UTCI > 26°C	100,14	104,11	3,96		
Days with WBGT > 25°C	5,69	21,51	277,71		
Lost Working Hours for intense manual work	3,87	49,14	1170,72		
Heat-related mortality	123,67	211,70	71,19		

impact of adaptation measures							
Prague city area - 2011-2020 annual average values (urban areas only)							
Heat stress indicators		Adaptation scenarios					
	Reference	Green Roofs	Light-colored materials	Soil unsealing	Urban Trees	Combination of all	Max impact [%]
Urban Heat Island [°C]	1,29	0,98	1,19	0,94	1,30	0,71	-44,96
Health Heat Wave Days	8,93	8,25	8,41	8,18	9,07	7,76	-13,11
Tropical Nights	16,18	11,37	15,44	11,81	16,11	8,11	-49,84
Days with UTCI > 26°C	100,14	80,74	101,13	94,16	88,63	72,22	-27,88
Days with WBGT > 25°C	5,69	4,58	5,39	5,56	4,92	4,31	-24,31
Lost Working Hours for intense manual work	3,87	1,94	3,37	3,61	2,77	1,4	63.50
Heat-related mortality	123,67	107,40	116,78	107,21	123,53	95,:	- vito
							VICO

Impact of adaptation measures

Urban Heat: Web viewer

https://destinationearth.marvintest.vito.be/

Destination Earth

