Robust satellite derived solar irradiance nowcasting

with spatio-temporal neural networks
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Purpose & Goals Outlook
— Solar irradiance nowcasts required for PV power output estimation — Operationalization as Singularity container (DE330 Phase 2 WP12)
— Satellite derived irradiance data enables large area forecasts — Introduction of further features while maintaining near-real-time availability
— Efficient near-real-time nowcasts with spatio-temproal neural network
— Robustness to missing frames due to loss or delay
DATA & CHALLENGES RESULTS: Extremes case study (DE330 Phase 1 WP8)

Data:
» Solar irradiance -DSSF' (3km? (sub nadir), 15min)

fThe timeframe of interest for this case study was 11-12.06.2019, encompassing ;\
thunderstorm over Denmark. IrradPhyDNet’s forecast results were compared

» Orographic component — elevation map? with, among other methods, Harmonie in 750m spatial resolution (runs at 0:00

« Temporal components (day/year, minute/day) and 12:00). The nowcasts were evaluated with two different lead times (1h and

» 12T x 256W x 64H x 6C (primary use case: Austria) 2h). Ground truth measurements were taken from 21 GLORAD stations.

Challenges: RMSE (21 GLORAD stations)
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* Missing and delayed irradiance frames in Figure 1: Sample of dataset (Austria):
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| The spatio-temporal neural network IrradPhyDNet is the result of a comparative hour (UTC) 5
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whole solar day, except for first hour of 165min,

T . Figure 4: IrradPhyDNet and DSSF ground truth,
750m-Harmonie’s 12:00-forecast, despite 06.12.2019 12:15-15:00 UTC (cropped to 30 min interval)
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Broad pre-test results from a multi-model

study showed the largest benefit of Timestep-

Dropout at 0.3 (30% chance of an irradiance

frame being zeroed/dropped). Figure 5: Results with different Timestep-Dropout
ratios, Forecast Skill relative to regularly trained models
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Timestep-Dropout training
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improved robustness on all

evaluated models, with two
models (IrradPhyDNet and

12 forecasted frames PhyDNet-dual) remaining

Figure 2: Architecture of IrradPhyDNet, default dataset Austria with max. 3h-lead time in 15min intervals
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Figure 6: Timestep-Dropout trained models evaluated on a range of missing
data ratios, 2021 (2000 random samples), Persistence (naive) kept constant

receiving any irradiance data i 1 frame
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| » Robustness as an alternative to ad-hoc interpolation ADDED VALUE

Technique: e
VT e X f(T) = {T‘m i v Single irradiance satellite-data-product sufficient for viable forecasts

Probability-based zeroing/dropping of dynamic

sample of 12 timesteps 7'

Biriusiip s Mol dihg Bolifig : S v’ Issues with missing data largely recoverable with Timestep-Dropout
P

wEonei s nold v Light-weight NN-nowcasts able to compete with NWP forecasts

pseudo-random mumber drawn from £7([0.0,1.0])

Static and timestamp features are not zeroed.
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