NASA Earth Science Technology Office (ESTO) Intelligent Systems Technology (IST)

Technology for Earth System Digital Twins

Jacqueline Le Moigne, Ben Smith, Michael Little, Robert Morris, Laura Rogers, Jon Ranson and Nikunj Oza

October 2024

Earth System Digital Twins (ESDTs) Definition

Earth Systems Digital Twins (ESDTs) are information systems for understanding, forecasting, and conjecturing the complex interconnections among Earth systems, including anthropomorphic forcings and impacts to humanity.

Digital Replica

An integrated picture of the past and current states of Earth systems.

Forecasting

An integrated picture of how Earth systems will evolve in the future from the current state.

Impact Assessment . . .

An integrated picture of how Earth systems could evolve under different hypothetical what-if scenarios.

An Earth System Digital Twin or ESDT is a dynamic and interactive information system that first provides a digital replica of the past and current states of the Earth or Earth system, as accurately and timely as possible, second allows for computing forecasts of future states under nominal assumptions and based on the current replica, and third offers the capability to investigate many hypothetical scenarios under varying impact assumptions.

=> What Now? What Next? What If?

An ESDT includes:

- Continuous observations of interacting Earth & human systems
- From many disparate sources
- Driving inter-connected models
- At many physical and temporal scales
- With fast, powerful and integrated prediction, analysis & visualization capabilities
- Using Machine Learning, causality and uncertainty quantification
- Running at scale in order to improve our science understanding of those systems, their interactions and their applications

- **1. Continuous integration** of timely data (real- or near-real-time for some applications, "timely for others)
- **2. Interactivity** with users => "playing with the models and the data" for policy/decision making and conjecturing/planning
- 3. Integration of anthropomorphic forcing and impact models
- 4. Heavy use of Machine Learning
 - Data Fusion and Data Assimilation
 - Super-Resolution/Downscaling
 - Speeding up models => higher spatial and temporal resolution possible
 - Causal Reasoning

ESDT Background

ESDT Workshop Report available on AIST Website:

https://esto.nasa.gov/files/ESDT_Workshop_Report.pdf

Workshop Co-Organized with Earth Science Information Partners (ESIP) Report Edited by ESDT Workshop Participants

> October 26-28, 2022 Washington, D.C.

ESDT Use Case

Wildfires

Ocean Carbon

Water Cycle

Central Africa Carbon Corridors

Atmospheric Boundary Layer

Coastal Zone Digital Twin

Standards for Interoperable Digital Twins Workshop September 18, 2023

 Presentations: <u>https://esto.nasa.gov/files/AIST/ESDT%</u> <u>20Standards%202023.pdf</u>

 Video: <u>https://www.youtube.com/watch?v=q</u> <u>dpL0Ui-jqc</u>

NASA

Advanced Information Systems Technology (AIST)

Document available

on AIST Website:

https://esto.nasa.gov/files/AIST/ESDT_ArchitectureFramework.pdf

Earth System Digital Twin (ESDT) Architecture Framework

Jacqueline Le Moigne, Michael M. Little, Robert A. Morris, Nikunj C. Oza, K. Jon Ranson, Haris Riris, Laura J. Rogers, Benjamin D. Smith

October 2023

Software and Information Systems Technology for ESDT

ESDT Capabilities and Technologies

ESDT Conceptual System Diagram

Functional components:

• Observational Data Repository (ODR)

IST

- Ingest Subsystem (ISS)
- DT Information Subsystem (DISS)
- Nominal Forecast Subsystem (NFSS)
- Impact Assessment Subsystem (IASS)
- Control and Monitor Subsystem (CMSS)
- User Interface Subsystem (UISS)

Architecture design may combine components or group them differently

ESDT Architecture Framework Considerations

- Consider architecture principles
 - Modularity
 - Process automation and error checking
 - Comply with Open-Source Science principles from SPD-41A
 - Permit evolution of concepts and uses and reasonable addition of new components
 - Provide the Glue to stitch together all ESD capabilities
 - Open-standard interfaces enabling opportunities for broader use
 - Interfaces for federation with other ESDTs
 - User interfaces for a range of skill levels and interests (i.e.,"from farmer to scientist")
- Enable component technology developers to consider their place in the overall architecture
 - Re-use beyond a single architecture
 - Identify technology gaps and what is required to fill them

ESDT Architecture Examples

Earth system models (ESMs) combine process-based models of different sub-systems of the Earth system into an integrated numerical model that yields for a given state of a system at time t a prediction of the system state for time t + 1.

*Simplified representations of natural phenomena used in ESMs. For example, to estimate sub-grid scale processes.

Foundation Models Really Big Neural Networks

Early Neural Networks

Small networks. Performed ok but often eclipsed by other methods.

Deep Neural Networks

10k ~ M parameters Lots of (labeled) training data Great performance

Foundation Models

Millions to Trillions of parameters Too much training data to hand-label Expensive to train (but only once) Newsworthy performance

Some ES Applications of Foundation Models

IST Foundation Models R&D

SLICE: Semi-supervised Learning from Images of a Changing Earth Wilson, JPL; AIST-21-0025

imagery

Eddy Detection from SAR SST

SST reconstruction under clouds

Coupled Statistics-Physics Guided Learning _{Xie, UMD; AIST-21-0068}

Cloud masks

reconstruction

Applications of Vision Transformers and semisupervised ML to enable hard remote sensing problems and increase performance despite scarce labeled data. Semi-supervised learning; physicsguided; and heterogeneity-aware learning. Digital twin technologies for climate projections

Schmidt, GISS; AIST-QRS-23-0005

show me the estimated regional temperature range over the next 30 years

ESDT

Custom visualization

Large Language Models (LLM) to generate bespoke data visualizations for user queries

Computational Challenges for ESDT CZ-DT Example

Function	SubSystem	A100 GPU-node-hours - annual	CPU-node hours-annual
Pre-train Forecast Models-Hydrology	FMSS	25 runs* 64 Nodes x48h from 800 TB data	
Pre-training updates (Hydrology)	FMSS	1 runs/mo* 64 Nodes x48h from 800 TB data	
Periodic forecast update	NFSS	2 Nodes*5min *6 runs/day*365d	
Monitor	CMSS		24h*7d*52w*3nodes
Ingest and feed DR	Ingest		24h*7d*52w*4 nodes*1time/hour
DR file service	Info SS		24h*7d*52w*2 nodes
Impact Assessment (Planner)	IASS	1 Node*2 min * 12/h * 10h (working cycle) * 5d/wk*52 wk/year	1 Node*30 min * 12 requests/h * 10h (working cycle) * 5d/wk*52 wk/year. (peak)
Visualization Support	UISS	1 Node * 15min* 6 requests/h *12h/d* 5d/w*52w/y	1 node *45min/req 6 requests/h *12h/d *5d/w*52w/y
DT Record file service	Info SS		24h*7d*52w*2 nodes
Initial Data conditioning	Ingest		16 nodes*16h/d*10d
Re-delivery Data conditioning	Ingest		4nodes*24h/d*365d/y
SysAdmin	CMSS		1 nodes*4h/d*365d/y
Archive	CMSS		4 nodes*24h/d*365d/y

1st YEAR TOTAL NODE HOURS: 81,857 GPU or 270,180 CPU or about 10 GPU nodes for a year

<u>Note</u>: Duty cycle not regular; some evolutions require a large number of GPU nodes for a few days, but only happen a few times a year. Others require a single node for a few seconds but occur frequently and on demand in a more interactive way. Load distribution among GPUs not always even, especially for training.

Function	Assumptions	
Pre-training (Initial)	24 runs for experiments + 1 final run w/ 800TB data (INTERACTIVE) AI models are constructed using a lot of experiments to try the model settings to get the best results.	
Pre-training Updates	Repeat 1 pre-training run and no experiments once per month (INTERACTIVE)	
Periodic forecast update	Inference run on model updated with prompts every 4 hours (BATCH)	
Monitor	Monitor System Status, run message bus, direct traffic for an IASS request and monitor for faults, failed deliveries, etc. (BATCH)	
Archive	Moving data from DR to DTRecord on schedule (BATCH)	
Ingest and feed DR	Ongoing acquisition and conditioning observational data and putting into the Digital Replica (BATCH)	
DT Record file service	continuous availability	
DR file service	continuous availability for ongoing archiving and requests for historical data	
Initial Data conditioning	Workflow to produce initial load of data for constructing AI model (assume 800 TB) (BATCH)	
Re-delivery data conditioning	Out of cycle fixes to missed deliveries (BATCH)	
Impact Assessment (Planner)	Peak is 12 requests/hour. Day work cycle is 12 hours for peak. (INTERACTIVE)	
Visualization Support	6 requests/hour peak at 12 hour days (INTERACTIVE)	
SysAdmin	24x7 availability to inspect system (INTERACTIVE)	

Visualization Challenges for ESDT

 User interfaces and visualizations for a range of skill levels and interests (i.e., "from farmer to scientist")

• Various outputs and interactions:

- Raw data to complex data products, forecasts and impacts (e.g., risk maps, comparisons, etc.)
- Real-Time, Near-Real-Time or
- Regularly produced or on-demand
- Pre-computed videos and visualizations at selected locations, regions of interest, timeframes, etc.
- Snapshot Digital Replica at TBD-hours refresh rate
- Interactive maps, graphs and results with a choice of variables, rendering, etc.
- Virtual or Extended interactive reality to explore the data and data products

Summer 2023 Record High Global Temperature NASA's Scientific Visualization Studio (M. Subbarao, G. Schmidt, E. Hawkins, L. Schuler, I. Jones, E. Kaplan, P. Jacobs) <u>https://svs.gsfc.nasa.gov/5161/</u>

Earth System Digital Twins (ESDT) Roadmap

 \mathcal{O}

