Towards geophysical extremes twins: status and next steps of the DT-GEO project

Arnau Folch

Geociencias Barcelona (GEO3BCN-CSIC), Spain

3rd Destination earth User eXchange Darmstadt, 15-16 October 2024

DT-GEO project Information

Type of Action	HORIZON-RIA	
Call	INFRA-2021-TECH-01	Next generation of scientific instrumentation, tools and methods
Topic	INFRA-2021-TECH-01-01	Interdisciplinary digital twins for modelling and simulating complex phenomena at the service of research infrastructure communities
Dates	From Sep 2022 to Aug 2025	
Budget	15,1 M€	
	Geophysics domain	Research, Academia, Private
Consortium	Target Research Infrastructures (RIs)	EuroHPC (FENIX)

The concept of Digital Twin (DT)

A Digital Twin is a **virtual lifecycle environment** that contains a data-informed **replica** of a real system, model-based **prediction** capabilities (scenarios) and, ideally, can provide **feedback** (decisions) to modify the real system (i.e. to close the lifecycle loop)

Analogy with the DevOps cycle in software engineering

DT-GEO general objectives

Deploy a pre-operational prototype of **Digital Twin (DT) on geophysical extremes** (potential integration in the Destination Earth flagship initiative)

Implement 12 **Digital Twin Components (DTCs)** addressing specific hazardous phenomena from **volcanoes, tsunamis, earthquakes**, and anthropogenically-induced extremes in order to conduct data-informed:

- 1. Early Warning Systems (EWS)
- 2. Short-term forecasts
- 3. Long-term hazard assessments

Provide a flexible framework for **automated FAIR-validation** of Digital Assets (DAs) and its integration in 2 Research Infrastructures (RIs)

Verify the DTCs in operational environments at 13 **Site Demonstrators** (SDs) of particular relevance located in Europe and beyond (TRL= 6,7)

DTC	Hazard	DTC name
1	Volcano	Volcanic unrest
2		Volcanic ash clouds
3		Lava flows
4		Volcanic gas dispersal
5	Tsunami	Tsunami Forecasting
6	Earthqua kes	Seismic Hazard
7		Earthquake forecasting
8		Tomography
9		Fault rupture
10		Shaking simulation
11		Aftershocks
12	Anthropo genic	Anthropogenic seismicity

The DT-GEO structure

Transversal
elements: provide
homogeneity and
interoperability
across the DTCs
(leveraged from
other projects)

12 Digital Twin Components (DTCs)

13
Site Demonstrators
(SDs)

Volcanoes

WP5

4 DTCs for volcanoes 3 SDs

Tsunamis

WP6

- 1 DTCs for tsunamis
- 4 SDs

Earthquakes

WP7

- 6 DTCs for earthquakes
- 4 SDs

Anthropogenic

WP8

- 2 DTCs for anthropogenic
- 2 SDs

Vertical pillars

An ecosystem of European projects

DT-GEO: current status

From M1 to M12

From M13 to M24

From M25 to M36

- ✓ Project setup
- ✓ Collection of requirements
- Define the computational infrastructure
- ✓ Blueprint of DT architecture
- ✓ Metadata scheme
- ✓ FAIR quality-based ecosystem

- ✓ Beta implementation of the DTCs
- Early execution of SDs in the FENIX cloud infrastructure (testing/staging)
- ✓ Design and development of the DT architecture, second iteration loop

- Further implementation of the DTCs (some coupled)
- Run the SDs in operational environments using HPC

DT-GEO blueprint architecture

DT-GEO blueprint architecture

git-based repositories

orcherstration, data transfer

services

WP5	3 SDs
WP6	4 SDs
WP7	4 SDs
WP8	2 SDs

What's next?: rise TRL to 6,7

DestinE integration continuum

THANK YOU

Workflow architecture

- Set up an organization (https://gitlab.com/dtgeo) in GitLab including Workflow Registry and the Software Catalog.
- Set up of Container Image Creation tool (for specific target machines).
- CI/CD approach to validate the DTCs in the staging environment and generate push-driven container images.

Computational architecture

- DT-GEO uses an **Infrastructure Manager** (IM) to deploy DTCs execution in cloud environments.
 - Open stack @CINECA ADA cloud service (laaS) for DTC testing (cloud).
- The DTC execution (SDs) will rely on HPC.
- Configuration of Spack modules on the HPC clusters and support for PyCOMPSs module configuration.

ADA OpenStack dashboard: https://adacloud.hpc.cineca.it Documentation: link

Interactive computing service: https://jupyter.g100.cineca.it/hub Documentation: link

FAIRness evaluation of DTCs

- Services for DTC reusability (catalogues, registries, and repositories), including the creation of a Workflows Hub Registry.
- Recording of workflow provenance: capture the details of a DTC execution as metadata.
- The interoperability of the generated metadata is guaranteed by the use of the RO-Crate specification.
- RO-Crate (Research Object Crate) is a method for aggregating and describing research data with associated metadata.

https://workflowhub.eu/programmes/36#projects

Data architecture

- Metadata schemes to characterise the DTCs and their relationships (aligned with geo-INQUIRE):
 - DCAT: Data Catalog vocabulary for publishing data catalogs on the web (https://www.w3.org/TR/ vocab-dcat/).
 - EPOS-DCAT-AP: an extension of the DCAT Application Profile for Research Infrastructures in the solid-Earth domain based on the Common European Research Information Format (CERIF).
 - DT-GEO: further extension of EPOS-DCAT to accommodate metadata for new entities in the DT-GEO schema such as Workflow and Step.
- Adoption and extension of the EOSC-synergy SQAaaS
 platform for assuring quality on DAs (e.g. FAIR-EVA has
 been extended with a specific plugin to integrate with the
 EPOS-DCAT catalog).

