

DESTINATION

EARTH

Climate Digital Twin (DE340)

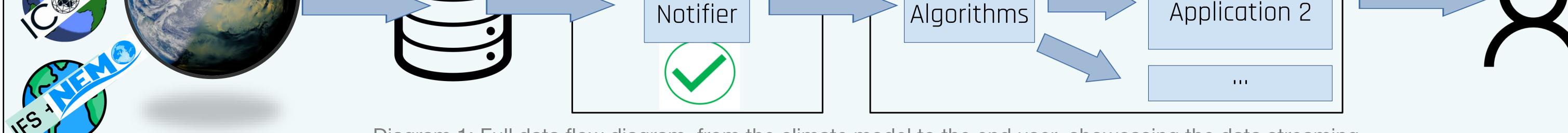
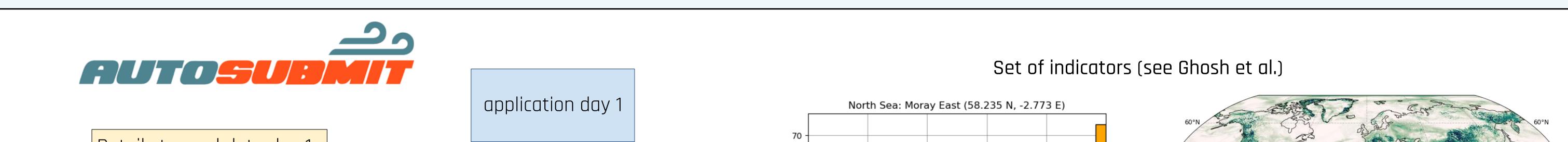
Towards the operationalization of use cases

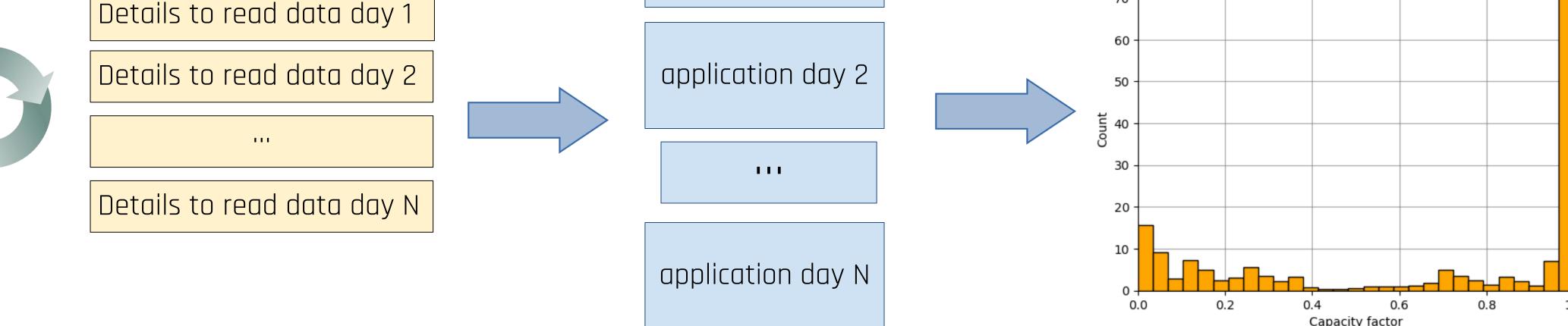
in the framework of the Climate Adaptation Digital Twin

Francesc Roura-Adserias¹ (francesc.roura@bsc.es), Sushovan Ghosh¹, Katherine Grayson¹, Albert Soret¹ ¹Barcelona Supercomputing Center (BSC), Earth Sciences, Barcelona, Catalonia, Spain

Summary: In order to deal with the high throughput of the high-resolution climate projections from the Climate Digital Twin, data streaming methods - designed to pass and process the data - have been developed. In the second phase of the project, the workflow that drives the data flow is being further developed as a fundamental piece to achieve operationality of the Climate Adaptation Digital Twin. Climate information can be obtained from the four use-cases corresponding to different impact sectors. In this poster, we show how the data streaming works, putting emphasis on the features that are essential for the energy sector

Data buffer in Field Data Bridge					
ESOM		Data listening	DATA CONSU	DATA CONSUMERS	
IFS*		mechanism		Application 1	END USER
		Data	One - Pass		


Diagram 1: Full data flow diagram, from the climate model to the end user, showcasing the data streaming

Data listening mechanism: Software that automatically notifies the downstream workflow that data is avalaible. (1) **One – pass algorithms:** Mathematical algorithms that compute statistics required by the user on the streamed data (storage saving). (2) **Application:** independent software packages that provide key indicators for desired impact sectors.

Key concept: the Generic State Vector (GSV). The GSV is a standardized representation of the climate model output, that can be seamlessly used by data consumers downstream.

Challenges: manage the huge amount of data produced by the models in an efficient way \rightarrow data streaming. (1,2)

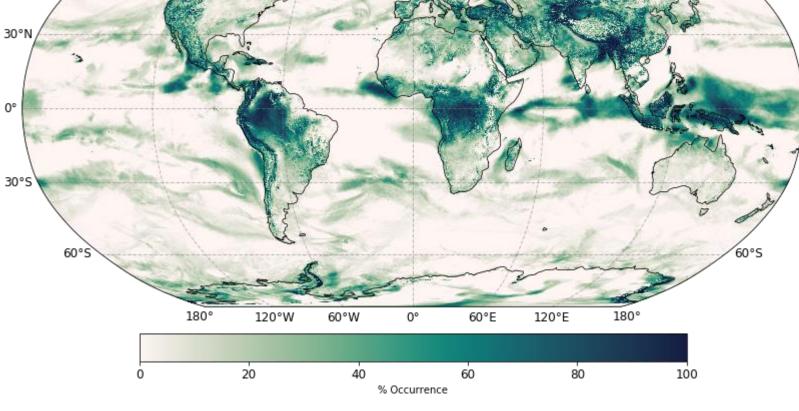


Figure 1: Wind speed (left) and capacity factor (right) distributions for a class S Vestas V164 wind turbine over Diagram 2: Details on how is the from the streaming parameters are automatically one week and computed from 1-hourly wind components (100u, 100v). Data was obtained from the ClimateDT IFS-FESOM projection simulation.

Figure 2 :Percentage occurrence of Low Wind Events (LWE) at 100m accumulated over one week irom 1hourly wind components (100u, 100v). Data was obtained from the ClimateDT IFS-FESOM projection simulation. The threshold for LWE: Wind Speed below 3m/s.

The workflow allows for **flexible setup** of the different parts of it, that is, different combinations of models and applications. It uses a YAML structure supported by **Autosubmit** (REFFERENCE)

passed to the application to compute the indicators

New paradigm in climate services:

Never before 2. Operational userexisted operational relevant indicators climate projections. (e.g. Fig 1,2)

Take home messages

• High spatio-temporal resolution climate projections are operationally transformed into regional actionable climate information tailored towards the needs of the different key users.

• First step towards the operationalization of climate projections, a significant development to inform near- to long-term adaptation in climate-dependent impact sectors.

• Data streaming is the solution to deal with vast amount of data that is produced from the high resolution simulations.

[3]: D. Manubens-Gil, C. P., J. Vegas-Regidor. (2016). Seamless [1]: Roura-Adserias, F., Gaya i Avila, A., Arriola i Mikele, L., Andrés-Martínez, M., Beltran Mora, D., [2]: Grayson, K., Lacima-Nadolnik, A., Roura Adserias, F., Gonzalez Yeregui, I., Grayson, K., De Paula Kinoshita, B., Ahmed, R., Lacima-Nadolnik, A., and Sharifi, E., Thober, S., and Doblas-Reyes, F.: One-pass management of ensemble climate prediction experiments on HPC platforms. 2016 International Castrillo, M.: The data streaming in the Climate Adaptation Digital Twin: a fundamental piece to algorithms for streamed climate data, EGU General Assembly Conference on High Performance Computing & Simulation (HPCS), transform climate data into climate information, EGU General Assembly 2024, Vienna, Austria, 2024, Vienna, Austria, 14–19 Apr 2024, EGU24-8062, Innsbruck. https://doi.org/10.1109/HPCSim. 14–19 Apr 2024, EGU24-2164, https://doi.org/10.5194/egusphere-egu24-2164, 2024. https://doi.org/10.5194/egusphere-egu24-8062, 2024. 2016.7568429

