Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Air Quality Forecasting Analysis System

Exploring ECMWF’s digital twins’ applications for air quality analysis and forecasts.

In a nutshell

  • High-resolution air quality forecasts and analyses are key for national and regional environmental agencies to understand the underlying phenomena, the cause of air pollution, and potentials to initiate appropriate measures to limit air pollution during extreme events.
  • The DestinE air quality use case develops an interactive
    air quality forecasting and analysis system to assess the population exposure.
  • The use case combines the advantages of machine learning applications and numerical modeling with EURAD-IM.

Technical Overview

Air Quality
Regional
Air pollution
Forschungszentrum Jülich

Challenge

Weather events like heat waves or droughts are frequently accompanied by severe air pollution. For example, high temperatures and strong solar irradiation during heat waves favor the production of ground-level ozone (O3) and can thus lead to extreme O3 concentrations posing a threat to humans and the environment. In addition, stable wintertime anticyclones cause extreme particulate matter (PM) concentrations due to enhanced residential heating and reduced dynamic mixing of the air mass. Hence, high-resolution air quality forecasts and analyses are key for national and regional environmental agencies to understand the underlying phenomena, the cause of air pollution, and potentials to initiate appropriate measures to limit air pollution during such extreme events.

 

Figure 1: EURAD-IM analysis of the daily maximum concentration of PM10 on 7 February 2023 at ground level. European air quality thresholds imply that PM10 concentrations must not exceed 50 µg/m³ on more than 35 days in a year and that the annual PM10 average concentration must nowhere exceed 40 µg/m³.

DestinE Solution

In this context, the DestinE air quality use case develops an interactive air quality forecasting analysis system to assess the population exposure. The system is based on a web-based user interface that will trigger high-resolution air quality analyses and forecasts produced by machine learning methods as well as the chemistry transport model EURAD-IM (European Air pollution Dispersion – Inverse Model). The machine learning approaches allow fast and precise air quality forecasts at the location of air pollution monitoring stations by fusing weather forecasts and ground-level observations. At the same time, EURAD-IM provides detailed forecasts and analyses of air quality in Europe on the spatial scale governed by the digital twin. The system further allows for detailed emission modulation illustrating the effect of mitigation scenarios on air pollution.

 

Figure 2: Envisioned DestinE Air Quality use case system. Here, ML stands for machine learning.

 

The use case combines the advantages of machine learning applications and numerical modeling with EURAD-IM. The machine learning modules are based on neural network approaches exploiting longtime datasets and allow for air quality predictions at the location of European observation stations and downscaling of coarse resolution numerical predictions to high resolution ground-level fields. The EURAD-IM is a chemistry transport model that can be executed to include three-dimensional variational data assimilation to combine the best available information on the atmospheric state. As base for air quality simulations serve, among others, meteorological data from the DestinE Extremes Digital Twin, in situ observations, and high-resolution anthropogenic emission data and temporal emission profiles. The ensemble generation will feature a modular emission control panel in the user interface that allows detailed modifications of the emission data on an emission sector basis (e.g. industry, road transport, agriculture etc.). All use case components will be run flexible and interchangeable, whereas machine learning tools are run on the service front end, while the EURAD-IM will directly couple to the model data of the DestinE Digital Twin.

 

Figure 3: Machine learning downscaling for high resolution air quality predications.

Impact

To demonstrate the information gained, two demonstrator simulations are planned to be delivered to the DE_370C core users LANUV (North Rhine-Westphalia Office of Nature, Environment and Consumer Protection) and UBA (German Environment Agency). Here, the focus is placed on high-resolution simulations in the areas of North Rhine-Westphalia and Berlin-Brandenburg. The first demonstrator prediction covers an O3 episode in July/August 2018, while the second demonstrator simulation analyses a PM episode in Winter 2016/2017. Both demonstrators will be designed in close exchange with the core users to incorporate the required output formats, ease of simulation control (i.e. triggering and output handling) and emission scenario design. These scenarios will be available to be selected via the user interface. Besides, a flexible tool to modulate the emissions on a sector and/or regional basis will be included in the demonstrator as a prototype. This may also include the modulation of temporal emission profiles to show the potential of, e.g., the implementation of stay-at-home orders during air pollution episodes.

 

Example of a winter-time PM episode (Source: David Karich via Pixabay).

Contributions

Providers

Forschungszentrum Jülich